# exceptional Lie algebra

exceptional Lie algebra
Математика: исключительная алгебра Ли

Универсальный англо-русский словарь. . 2011.

### Смотреть что такое "exceptional Lie algebra" в других словарях:

• Lie algebra representation — Lie groups …   Wikipedia

• En (Lie algebra) — In mathematics, especially in Lie theory, E n is the Kac–Moody algebra whose Dynkin diagram is a line of n 1 points with an extra point attached to the third point from the end. Finite dimensional Lie algebras*E3 is another name for the Lie… …   Wikipedia

• Compact Lie algebra — Lie groups …   Wikipedia

• Lie group — Lie groups …   Wikipedia

• Exceptional object — Many branches of mathematics study objects of a given type and prove a classification theorem. A common theme is that the classification results in a number of series of objects as well as a finite number of exceptions that don t fit into any… …   Wikipedia

• Lie group decomposition — In mathematics, Lie group decompositions are used to analyse the structure of Lie groups and associated objects, by showing how they are built up out of subgroups. They are essential technical tools in the representation theory of Lie groups and… …   Wikipedia

• Simple Lie group — Lie groups …   Wikipedia

• Real form (Lie theory) — Lie groups …   Wikipedia

• List of simple Lie groups — In mathematics, the simple Lie groups were classified by Élie Cartan.The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symmetric spaces. See also the table of Lie groups for a smaller list of… …   Wikipedia

• List of Lie groups topics — This is a list of Lie group topics, by Wikipedia page. Contents 1 Examples 2 Lie algebras 3 Foundational results 4 Semisimple theory …   Wikipedia

• List of Lie group topics — This is a list of Lie group topics, by Wikipedia page. Examples See Table of Lie groups for a list *General linear group, special linear group **SL2(R) **SL2(C) *Unitary group, special unitary group **SU(2) **SU(3) *Orthogonal group, special… …   Wikipedia

### Поделиться ссылкой на выделенное

##### Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»